Solvent-Polymer Interactions in Polybutadienes

Paolo Alessi* and Angelo Cortesi

DICAMP, University of Trieste, via Valerio 2, 34127 Trieste, Italy

Pablo Sacomani[†] and E. Vallés

PLAPIQUI, UNS-CONICET, C.C. 717, 8000-Bahia Blanca, Argentina Received February 4, 1993; Revised Manuscript Received July 20, 1993*

ABSTRACT: Infinite-dilution activity coefficients of 26 solvents in three polybutadienes were determined by inverse gas chromatography in the temperature range 40–100 °C. The polybutadienes have well-characterized structures and different molecular weights. The data are useful for the development of thermodynamic models for polymer—solvent interaction and for characterization. The results were fitted to the PHCT equation of state. The data indicate that activity coefficients depend on polymer molecular weight and structure.

Introduction

In polymer processing there is a growing need for knowledge of the phase behavior of polymer solutions.

The literature provides correlative and predictive methods for the activity of solvents in polymer solutions. Correlative models, like the well-known Flory-Huggins, need specific experimental data for the estimation of the parameters.

Predictive methods,¹ on the other hand, are based on a group-contribution hypothesis and need no specific information about the particular system. Despite the generality of these methods, they are not able to distinguish among polymer isomers.

In this work, three samples of well-characterized polybutadiene polymers were studied by inverse gas chromatgraphy²⁻⁴ to determine the effect of structure and molecular weight on the activity coefficient at infinite dilution for 26 volatile organic liquids with different polarities.

Experimental Section

1. Apparatus. A thermal-conductivity chromatograph (Fractovap Model B, Carlo Erba, Italy) was employed. The thermostat stability of the oven was better than 0.05 deg, measured by an electronic thermometer Systemteknik AB, Sweden, Series S1220. The flow of the carrier gas (helium) was measured with a soapfilm meter. The pressure drop in the column was read in a U mercury manometer.

The measured experimental conditions were retention time of solvent, dead time (retention time of air), carrier flow, column temperature, flow meter temperature, ambient pressure, and pressure drop in the column. The carrier flow was set ranging from 20 to 40 mL/min, and the pressure drop was about 40–150 mbar.

For all three polymers the influence of carrier gas flow rate was evaluated by extrapolating to zero flow rate the retention volumes: no influence of the flow rate was observed for all the stationary phases.

Because the peaks did not show notable asymmetry, retention times were read using peak maxima.

The uncertainties are estimated to be as follows: carrier flow, $\pm 0.005 \text{ mL/s}$; column temperature, $\pm 0.05 \text{ deg}$; soap-film meter temperature, $\pm 0.1 \text{ deg}$; inlet and outlet pressures, $\pm 2 \text{ mbar}$; solvent mass, $\pm 0.001 \text{ g}$. The effect of these variables in the activity coefficients is estimated to be about 2%. The linearity in the

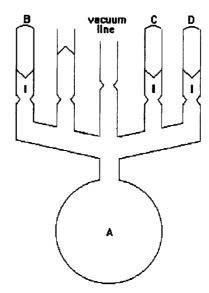


Figure 1.

Table I. Molecular Weights of Polybutadienes Determined by Low-Angle Laser Scattering (LALLS), Gel Permeation (GPC), Vapor Pressure Osmometry (VPO), and Membrane Osmometry (MO)

	LALLS		GPC		VPO	МО
no.	$M_{ m w}$	$M_{\rm n}$	M _₩	$M_{\rm w}/M_{\rm n}$	$M_{\rm n}$	$M_{\rm n}$
1		11 900	12 200	1.02	12 200	
2	13 100	11 800	12 300	1.04		
3	108 000	88 000	96 000	1.09		98 000

Table II. Molecular Weights and Vinyl Contents of Polybutadienes

			% of isomer					
no.	$M_{ m w}$ used	trans	cis	vinyl				
1	12 200	45.5	46.5	8.0				
2	13 100	10.2	20.8	69.0				
3	108 000	46.5	40.6	12.9				

plots of the logarithm of $V_{\rm g}^{\,0}$ vs 1/T was always satisfactory to better than ± 0.024 in the natural logarithm of $V_{\rm g}^{\,0}$, which gives an uncertainty of about 3% in activity coefficients.

2. Polymer Synthesis and Characterization. Three narrow molecular weight distribution polybutadienes differing in molecular weight and vinyl content were anionically polymerized in a vacuum system at room temperature under high purity conditions. The reaction was initiated by tert-butyllithium and terminated with dry 2-propanol. The polymerization reactor (A) is shown in Figure 1 with the vials containing the initiator (C), termination agent (D), and purge (B). The reactor was joined

[†] Present address: ENIRicerche, 20097 S. Donato Milanese, Milano, Italy.

Abstract published in Advance ACS Abstracts, October 1, 1993.

Table III. Activity Coefficients at Infinite Dilution (Ω_1^a), Specific Retention Volume (V_k^a), and Flory-Huggins Parameters (χ) for Different Organic Solvants in the Polyhutedianes of Different Temperatures

				And the second s	01	Solver	its in t	he Po	ybut	adien	Solvents in the Polybutadienes at Different Temperatures	emper	ature								
		od	polymer 1	_	lod	polymer 2		poly	polymer 3				bd	polymer	_	pol	polymer 2		poly	polymer 3	
component	T (°C)	V.° [mL/g·K)]	Ω_1^*	×	V.° [mL/ (g-K)]	Ω_1 "	×	V.0 [mL/(g·K)]	Ω_1^*	×	component	T (°C)	$\Pr_{[mL]}^{V_0}$	Ω_1^{∞}	×	V.° [mL/ (g·K)]	Ω	n] x (g.	V.° [mL/ (g·K)]	Ω,**	×
n-pentane	40.0 60.0	21.2	7.5		46.3 26.2	6.2 6.0	0.442			•	2-propanol	40.0	14.0	30.2	2.247	47.0 8		2.943 2.145			
	100.0	12.9	7.4	0.582	15.8	6.0	0.374					0.001	14.0 9.3	30.2 22.0	1.909			2.145 1.855			
n-hexane	40.0	}	2		132.6		0.385				1-butanol	40.0									
	0.08	52.8	6.8 6.8	0.590	66.0 35.6		0.366					0.0	120.2	32.4	2.348 9.035				242.5 1		1.640
	100.0	17.8	9.9		20.5	5.7	0.379					100.0	31.9	19.0	1.791					12.2	1.341
n-heptane	40.0				365.2	5.1					acetonitrile	40.0	5	i.	9	_		2.862			
	80.0	66.5	6.2		83.4 83.4	4.9 6.4				0.694		80.0	13.4	47	2.578			2.493			
	0.00	36.3	6.2	0.523	44.9	2.0	0.310	31.3	7.2 0	0. 099 .0	olimpiacoj con	0.00	9.6	41	2.435	9.4	٥	2.355			
n-octane	60.0	321.8	0.9	0.535	300.0 408.8	4.3 7.4				0.707	propionitrile	60.0	47.4	30.9	2.209						1.724
	90.0	147.1	5.9		186.8	4.6			0 6.9	0.668		0.08	27.0	27.1	2.067	30.9		1.930 4		17.3	1.613
1-hexene	40.0	1.07	0.0		32.3 125.1		0.319				butyronitrile	40.0	10.0	0.47	1.300						67C-1
	0.09	53.5	5.8	0.473	64.3		0.289					0.09	109.4	21.9	1.899			1.756			
	90.0	29.1 16.9	0.0		35.7 21.1		0.277					0.00	32.0	19.4	1.769		, , , , , , ,	1.647			
1-heptene	40.0				345.4	4.5	0.253				methyl acetate	40.0		:			11.2	1.138			
	0.0	129.7	5.5		159.7	4.5	0.224			0.571		0.09	36.5	10.7	1.080			1.036			
	30.00 100.0	55.4 35.4	5.7	0.423	43.8 8.8	4.5 4.6	0.229	32.0	6.3 6.3	0.532		100.0	7.1	14.0	1.559			0.965 0.917			
1-octene	40.0				938.7	4.3				_	ethyl acetate	40.0				161.0		861			
	0.09	315.1	5.2		390.7			263.6	6.2 0	0.580		60.0	67.3	7.1		79.0			76.4		2.802
	0.00	146.7 74.2	5.2	0.396	179.6 89.7		0.193 0.208			0.538		90.0 100.0	34.6 19.1	7.0	0.916 0.918	42.0 23.9	5.8	0.721 4 0.691 2	40.0 22.4	6.1	0.764
cyclohexane	40.0				285.8		0.218				propyl acetate	40.0				433.5					
	0.09	118.4	4.5		141.6	3.8 7	0.177			0.475		0.0	156.0	6.3		191.8	5.1 0.		176.5		7.677
	100.0	36.0	6.6	0.346	43.6	3.8	0.154	32.4	5.1	0.445		100.0	39.9	6.1	0.750	48.8			45.2	5.4	0.617
methylcyclohexane	40.0	9	,		511.4	4.2	0.168			_	butyl acetate	40.0	9	,		1179.3		220			
	8 9 9 9	100.6	4.9 6.9	0.312	121.2	1.1	0.126					80.0 0.08	170.1	5.5		207.8		0.445			
	100.0	54.7	5.0		66.2	4.1	0.131					100.0	83.1	5.4		100.3		0.445			
etnyicycionexane	60.0 0.0	528.0	4.2		632.9	3.5 3.5	0.044			•	cniorororm	60.0 0.0	100.0	2.02	0.081	105.0		0.032 11	119.8	1.69	0.105
	80.0	242.3	4.2	0.222	293.3	3.5	0.030					80.0	53.2	2.11		57.2			61.0		0.028
benzene	40.0 40.0	120.8	4.3		147.5 325.4	ა. ე. 7	0.035 0.255			•	carbon tetrachloride	40.0	3U.3	C7.7	0.104	309.6		0.000 0.097	93.4		0.000
	0.09	146.8	3.9		158.9	3.6						0.09	136.6	1.88		148.5			127.6		3.746
	0.00	76.2 42.4	3.9 4.0	0.291	84.1	3.55 6.05	0.191	76.9 43.8	0 0 6 6	0.275		0.00	72.7	1.89 1.99	0.183 0.193	43.3	1.78 1.86 0.0	0.120 6 0.152 3	68.7 39.6	2.00	0.233
toluene	40.0				946.9	3.3					1-chloropropane	40.0		:		88.0					}
	9 6	370.1 178.8	9 6	0.225	414.0 198.8	7 6	0.112	357.4		0.253		9.09 0.09 0.09	40.6 23.4	4. 4 8. 8	0.480	47.5 27.5	4.1	0.323	41.1 23.8		0.462
•	100.0	93.3	3.7		103.2	8.3	0.117		3.7 0	0.208	7	100.0	14.4	4.9	0.462	16.9			14.7	4.8	0.434
acetone	60.0 0.0	99.9	16.1			15.6	1.540			_	I-chlorobutane	6 0.0 0.0	102.9	4.5	0.461	246.6 122.0	3.7		109.7	4.5	0 449
	80.0	13.2	15.0	1.567		12.7	1.402					0.08	54.1	4.5	0.446	65.4	3.7	0.257 5	53.9		0.444
	100.0	0.0	14.4	0.450		12.0	1.56.1					100.0	o0.1	1 .	0.4.40	0.10			ر. د.		7.40*

ME ketone	40.0				134.6	10.1	1.194				1-chloropentane	40.0				622.9	3.8	0.373
	0.09	57.1	11.0	1.267	68.1	9.3	1.091	69.1		1.071	•	0.09	252.9	4.2	0.477	291.7	3.7	0.334
	80.0	31.7	10.2	1.179	37.2	8.7	1.018	39.9		0.941		80.0	122.7	4.2	0.467	142.2	3.7	0.319
	100.0	18.7	9.7	1.115	21.7	8.4	0.967	24.5		0.841		100.0	64.3	4.3	0.476	74.9	3.7	0.324
MIB ketone	40.0				522.9	7.6	0.953				tetrahydrofuran	40.0				214.0	3.7	0.352
	90.09	199.8	7.9	0.995	235.0	6.7	0.832	207.6		0.948		0.09	93.3	4.2	0.457	107.8	3.6	0.313
	80.0	95.7	7.6	0.946	115.6	6.3	0.756	110.3		0.796		80.0	49.9	4.2	0.456	58.7	3.6	0.293
	100.0	49.6	7.6	0.929	61.4	6.1	0.715	62.7		989.0		100.0	28.5	4.3	0.469	34.1	3.6	0.289
DE ketone	40.0				374.7	7.1	0.820				diethyl ether	40.0				52.9	5.2	0.425
	0.09	141.1	8.1	0.944	171.5	6.7	0.749	169.2		0.755		0.09	24.0	6.3	0.598	29.0	5.3	0.411
	80.0	70.2	7.8	0.900	85.7	6.4	0.700	85.4		0.697		90.0	14.0	6.5	0.597	17.0	5.4	0.404
	100.0	37.6	7.7	0.873	46.2	6.3	0.667	46.4		0.656		100.0	8.7	6.7	0.599	10.6	5.5	0.402
methanol	40.0				14.1	145	3.850				dipropyl ether	40.0				246.4	5.5	0.510
	90.09	9.5	92	3.409	9.5	92	3.409					0.09	117.7	5.2	0.446	58.7	10.5	1.142
	80.0	6.3	99	3.026	6.3	99	3.030					80.0	59.6	5.2	0.435	16.5	19.0	1.722
	100.0	4.5	48	2.695	4.5	49	2.702					100.0	32.5	5.4	0.442	5.3	33.0	2.257
ethanol	40.0				30.3	35	3.411				dibutyl ether	0.09	672.4	4.6	0.368			
	90.09	17.1	63	3.019	17.8	8	2.978					80.0	287.8	4.5	0.337			
	80.0	10.6	45	2.660	11.1	43	2.611					100.0	134.9	4.5	0.336			
	100.0	6.9	33.6	2.355	7.3	31.8	2.298											
1-propanol	40.0				92.9	29	2.973											
	90.0	45.5	41	2.608	47.7	6 6	2.561	95.3	19.7	1.864								
	90.0	25.1	30.3	2.284	26.4	28.8	2.233	45.4	16.7	1.684								
	100.0	14.7	23.7	2.025	15.5	22.4	1.970	23.5	14.9	1.553								

to the vacuum line to obtain a high vacuum. Then it was separated from the line to be washed with the purge containing a dilute solution of n-butyllithium in cyclohexane. The washing solution was then returned to vial B, frozen, and separated from the reactor that was joined again to the line. The previously dried solvent and the monomer were subsequently distilled into the reactor. The whole system was then separated from the vacuum line, and the initiator was added to A by breaking the seal between C and A with a magnetic hammer. The reaction was allowed to proceed for about 120 h and was finalized by the addition of the 2-propanol contained in vial D. The polymer was precipitated from the cyclohexane solution with methanol. A 20 ppm quantity of antioxidant (Santonox) was added to the polymer at this stage. The polymer was finally dried under vacuum for several hours until no traces of methanol were detected.

Two initiator concentrations were used to obtain the low (104) and high (105) molecular weight polymers. Changing the polarity of the reaction medium provides a method to increase the vinyl content of the polymer. For this reason, tetrahydrofuran (THF) was added to the cyclohexane solution of the monomer in one of the low molecular weight polymerizations to obtain two polymers with similar molecular weights differing in content of the 1,2 vinyl isomer.

The double-bond microstructure of the polybutadienes was determined by infrared spectroscopy. The absorption bands used to resolve the content of the different double bonds in the polymer chains were 966 cm⁻¹ for 1,4 trans, 910 cm⁻¹ for 1,2 vinyl, and 735 cm⁻¹ for the 1,4 cis.^{6,7} The infrared measurements were made using 2% (weight) solutions in carbon disulfide.

Several techniques were used to determine the molecular weights and molecular weight distribution $(M_{\pi}/M_{\rm p})$ of the polymers. Gel permeation chromatography (GPC) was performed using a Waters 150-C ALC-GPC instrument. A set of five μ-Styragel columns was used with nominal pore sizes 106, 105, 104, 103, and 500 Å. Toluene was the carrier solvent, and the flow rate was 1.0 mL/min. The universal calibration curve was used with linear polystyrene standards (Pressure Chemicals). A Chromatrix KMX-6 low-angle laser light scattering instrument was used to determine the weight-average molecular weights (M_w) of the samples. Number-average molecular weights were measured by membrane (Knauer) and vapor pressure osmometry (Wescan 233).

The results of these characterizations are summarized in Tables I and II.

3. Columns. The polymer samples were solubilized in toluene or in chloroform and mixed with a known quantity of silanized Chromosorb (WDMCS 100/120 mesh) which allows no adsorption on the support. The solvent was then removed by vacuum and nitrogen stripping, and the coated support was fed into 60-cmlong, 1/4-in.-O.D. copper tubes. The solvent was further removed once the column was installed, by flowing helium at 80 °C for about 30 h. The weight percent of polymer in the impregnated support was over 15% for all columns: in these conditions the effect of adsorption is negligible.3 The mass of polymer in the columns was calculated by emptying them and calcining the stationary phases in an oven at 800 °C for more than 8 h.

Solute $(0.1 \mu L)$ was injected with a Hamilton syringe. All the solvents were reagent grade from C. Erba, Fluka, and Merck.

Results and Discussion

In polymer solutions, activity coefficients are more conveniently based in mass rather than in molar fraction.8 As discussed in numerous references (e.g. ref 9), the activity coefficient at infinite dilution of a solvent in a polymer at temperature T and zero pressure, Ω_1^{∞} , is related to the specific retention volume corrected to 273.15 K, $V_{\rm g}^0$, by

$$\ln(\Omega_1^{\infty}) = \ln\left(\frac{R273.15}{M_1 V_{\sigma}^0 P_1^s}\right) - \frac{(B_{11} - v_1^0) P_1^s}{RT}$$
 (1)

where B_{11} , P_{1}^{s} , and v_{1}^{0} are, respectively, the second virial coefficient, the vapor pressure, and the molar volume of the solvent at the column absolute temperature T; R is the universal gas constant. The specific retention volume is given by

$$V_{\rm g}^{0} = (t_{\rm r} - t_{\rm a}) \frac{F}{W} \left(\frac{273.15}{T_{\rm f}} \right) j_{3}^{2} \left(\frac{P_{\rm f} - P_{\rm w}^{\ s}}{P_{\rm o}} \right)$$
(2)

In eq 2, W is the mass of polymer in the column, F is the carrier gas flow, $T_{\rm f}$ and $P_{\rm f}$ are the absolute temperature and pressure at the flow meter, $P_{\rm w}{}^{\rm s}$ is the vapor pressure of water at $T_{\rm f}$, $t_{\rm r}$ and $t_{\rm a}$ are the retention time of the solvent and the dead time, respectively. $j_3{}^2$ represents the correction factor for gas compressibility inside the column; it is given by

$$j_3^2 = \frac{3}{2} \frac{(P_1/P_0)^2 - 1}{(P_1/P_0)^3 - 1}$$
 (3)

where P_i and P_o are the pressure at the input and at the output of the column.

For all the volatile liquids, saturation pressures were calculated with the Antoine equation, 10 second virial coefficients with the correlation of Hayden-O'Connell, 11 and liquid molar volumes with the correlation of Yen-Woods 12

The dead time $t_{\rm a}$ is repeatedly measured by air injections during the isothermal runs to avoid errors due to possible variations in carrier flow. The flow rate is also measured several times, because its variation produces an important source of error.

As the Flory χ parameter is extensively used in polymer solutions, it is useful to report also the χ values calculated from the experimental $V_{\rm g}{}^0$ data. The Flory parameter χ can be calculated directly from $\Omega_1^{\infty;13}$

$$\chi = \ln(\Omega_1^{\infty}) - \left(1 - \frac{1}{r}\right) + \ln\left(\frac{\rho_1}{\rho_2}\right) \tag{4}$$

with

$$r = \frac{(M_2)_n^{\ \alpha} \rho_1}{M_1 \rho_2} \tag{5}$$

Where ρ and M are the mass density and molecular weight, respectively, subscript 2 refers to polymer, and subscript n indicates number average. The following expression was used to calculate the densities of the polymers:⁷

$$\rho_2 (g/mL) = 0.895 \exp(-0.00075(t (^{\circ}C) - 25))$$
 (6)

In Table III, experimental results for V_g^0 , Ω_1^∞ , and χ are listed at different temperatures for several volatile liquids in the different polymer samples. The activity coefficients and specific retention volumes are different for the three polymers; the differences are in general much wider than the experimental uncertainties.

To compare our experimental data with those in the literature, we calculated $V_{\rm g}^{100}$ ($V_{\rm g}^{100} = V_{\rm g}^{0} \times 373.15/273.15$) at 100 °C for solvents in polymers 1 and 3 of this work and in a polybutadiene reported by Romdhane et al. ¹⁴

The characteristics of this polybutadiene (PBD¹⁴) are $M_{\rm n}=22\,600$, $M_{\rm w}/M_{\rm n}=1.06$, with the following composition: trans(1,4) 52%, cis(1,4) 40%, vinyl(1,2) 8%. We also compared the retention values in polymer 2 (which has the higher content of vinylic isomer) with the ones in the wholly vinylic polybutadiene, PVE (molecular weight not reported), reported by Du et al. 13

Agreement is good according to both structures and molecular weight. Values for polymer 1 are closer to those for PBD, in agreement with their similar structure. For methanol and acetonitrile, there is a disagreement; the

Figure 2. 0.48 0.44 poly1 0.4 ▲ poly2 × 0.36 poly3 0.32 PVE 0.28 0.24 3.00E-03 2.60E-03 2.80E-03 3.20E-03 1/T(K)

Figure 3.

values in ref 14 are much higher. Values for polymer 2 agree well also with those for PVE.

Differences in solvent-polymer interactions are evident from one polymer to another.

To indicate differences in polymer interactions, Figure 2 shows the ratio between the $V_{\rm g}$ for cyclohexane and that for carbon tetrachloride at different temperatures, for the polymers in this work and for PBD.¹⁴ In this figure, the effect of different structures is shown more strongly than the effect of different molecular weights. Moreover the good agreement between polymer 1 and PBD is also evident.

In Table III, the observed variation of the χ Flory parameter with temperature is low for the three polymers, for almost every solvent, and it is generally higher for polymer 3.

For systems with χ less than 0.4, χ increases with decreasing temperature.

In Figure 3, the χ parameter is plotted as a function of temperature for 1-chlorobutane and the polymers investigated in this work. The value at 373.15 K from ref 13 for PVE is also reported. For a relatively good solvent, the effect of the different structures between polymers 1 and 2 is more important than that of different molecular weights between 1 and 3.

With the $V_{\rm g}^0$ data, partial molar enthalpies of solution of the solutes at infinite dilution in the polymers, namely $\overline{H_1}^{\rm s,\infty}$, can be calculated from the slope of $\ln(V_{\rm g}^0)$ versus 1/T lines, as follows:²

$$\overline{H_1}^{s,\infty} = -R \frac{\partial (\ln(V_g^0))}{\partial (1/T)} \tag{7}$$

In eq 7 it is assumed that the correction for nonideality of the solvent (in eq 1, second term in the right hand side), does not vary appreciably with temperature. The $\overline{H_1}^{s,\infty}$ values in the temperature range investigated (see Table III) are reported in Table IV, together with values obtained in ref 14 for PBD. The data for polymer 1 and PBD are similar except for methanol and acetonitrile.

Table IV. Partial Molar Enthalpies at Infinite Dilution of the Solutes in the Polymers, $(\overline{H_1}^{Sx})$, kJ/(g mol)

ie i oryme	19, (111 /,	Pol/ (2 mo	1,
POLY1	POLY2	POLY3	PBD ¹⁴
24	25		
28	30		29
		37	
		30	30
			31
		35	36
			28
			29
			35
		33	
			43
		36	
			27
		41	34
			32
		29	
			32
		35	
			30
			31
		31	
			31
33	62		
41			
	POLY1 24 28 33 38 30 34 37 31 33 38 32 36 25 29 36 34 18 23 29 23 34 24 28 32 42 33 35 39 31 31 27 31 35 31 26	POLY1 POLY2 24 25 28 30 33 34 38 38 30 29 34 33 37 38 31 30 33 33 38 38 32 31 36 36 25 25 29 30 36 35 34 34 18 18 23 23 29 29 23 25 34 32 24 24 28 28 32 33 42 27 33 31 35 35 39 40 31 30 35 35 31 30 35 35 31 30 35	POLY1 POLY2 POLY3 24 25 28 30 33 34 32 38 38 37 30 29 34 33 32 37 38 36 31 30 30 33 33 33 38 38 36 31 31 36 36 35 25 25 29 30 27 36 35 31 34 34 33 18 18 33 18 18 33 31 32 34 32 41 24 24 28 28 29 32 33 32 41 24 24 28 28 29 32 33 31 32 35 35 35 35 39 40 31 30 31 32 30 27 27 27 31 30 31 35 35 3

Table V. PHCT Parameters for Some Polybutadiene Polymers and Organic Compounds

· · · · · · · · · · · · · · · · · · ·		•	
	T* (K)	V* (cm³/mol)	C
Poly1 (12 200)	451.41	8471.7	257.5
Poly2 (13 100)	451.41	9096.6	276.5
PBD (23 956)	451.41	16635.0	505.7
Poly3 (108 000)	451.41	74995.2	2279.8
cyclohexane	321.84	83.28	2.01
benzene	368.10	51.61	1.68
1-butanol	360.74	20.67	2.43
toluene	376.25	67.56	1.80
ethyl acetate	304.27	66.99	2.31
ME ketone	247.0	168.6	3.17

The effect of different polymer structures on their interactions with infinitely dilute solutes was investigated also using the PHCT equation of state. 15,16

In this equation the parameters of the polymer, T^* , v^* , and c, are related to the molecular weight; they are connected with the temperature, the molar volume, and the form and flexibility of the compound, respectively, and obtained from PVT data.

Due to the very few PVT data available in literature, the PHCT parameters for polybutadiene polymers were calculated using the density correlation reported in eq 6. For pure solutes the parameters were directly calculated from vapor pressure data. All parameters are reported in Table V.

The extention to a mixture of the equation of state requires the definition of combining and mixing rules. 16

Table VI. Binary Interaction Coefficients Kij at 90 °C of Organic Compounds (i) in Polybutadiene Polymers (j) for the PHCT Equation

	Poly1 (12 200)	Poly2 (13 100)	PBD (23 956)	Poly3 (108 000)
cyclohexane	0.162	0.157	0.182	0.229
1-butanol	0.408	0.405	0.437	0.498
ME ketone	0.084	0.082	0.094	0.121
benzene	0.517	0.499	0.534	0.580
toluene	0.186	0.185	0.209	0.267
ethyl acetate	0.197	0.192	0.217	0.274

A binary interaction parameter K_{ij} (function of the temperature) is included in the geometric combining rule of the pure component ϵ (potential energy per unit area).

By fitting the weight fraction infinite-dilution activity coefficient data (Table III), it was possible to calculate the interaction coefficients for binary mixtures of polybutadiene polymers and volatile liquids. The binary coefficients (at 90 °C), for polymers of similar structure (Poly 1, Poly 3, PDB), grow with increasing polymer molecular weight. For Poly 2, of different structure, the values obtained do not follow the same trend (see Table VI).

Conclusions

Retention volumes were measured at several temperatures for 26 volatile liquids in different polybutadienes of different structure and molecular weight. Mass-fraction activity coefficients, Flory χ parameters, and infinitedilution partial molar enthalpies were calculated. The data show the effect of polymer molecular weight and structure. Binary interaction parameters of the PHCT equation of state were obtained for several volatile liquids with the polymers.

Acknowledgment. We gratefully acknowledge MU-RST (Ministero dell'Università e della Ricerca Scientifica e Tecnologica) for the financial support and Susana Di Nizio for the physical characterization of the polymers. P.A.S. gratefully acknowledges the Ministero degli Affari Esteri d'Italia for the fellowship.

References and Notes

- (1) Oishi, T.; Prausnitz, J. M. Ind. Eng. Chem. Process Des. Dev. 1978, 17 (3), 333
- Lipson, J. E. G.; Guillet, J. E. J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 1199.
- Newman, R. D.; Prausnitz, J. M. The J. of Phys. Chem. 1972, 76 (10), 1492.
- Laub, R. J.; Pecsok, R. L. Physicochemical Applications of Gas Chromatography; Wiley-Interscience: New York, 1978.
- (5) Morton, M.; Fetters, L. J. Chem. Technol. 1975, 48, 359.
- (6) Rachapudy, G.; Smith, G.; Raju, V.; Graessley, W. J. Polym.
- Sci., Polym. Phys. Ed. 1979, 17, 1183. Carella, J. M.; Graessley, W.; Fetters, L. J. Macromolecules 1984, 17, 2775.
- Patterson, D.; Tewari, Y. B.; Schreiber, H. P.; Guillet, J. E. Macromolecules 1971, 4, 356.
- Majer, V.; Svoboda, V.; Kehiaian, H. V. IUPAC: Chemical Data Series No. 32; Blackwell Scientific Publications: Oxford, U.K.,
- (10) Boublik, T.; Fried, V.; Hála, E. The vapour pressures of pure substances; Sd. rev. Ed.; Elsevier: Amsterdam, 1984.
- (11) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14 (3), 209. Yen, L. C.; Woods, S. S. AIChE J. 1966, 12 (1), 95.
- Du, Q.; Hattam, P.; Munk, P. J. Chem. Eng. Data 1990, 35, 367.
- (14) Romdhane, I. H.; Danner, R. P. J. Chem. Eng. Data 1991, 36,
- Cotterman, R. L.; Schwarz, B. J.; Prausnitz, J. M. AIChE J. 1986, 32 (11), 1787. (16) Cotterman, R. L.; Prausnitz, J. M. AIChE J. 1986, 32 (11), 1799.